习题2.2没有全部做,我读书的速度远远超过做习题的进度,没办法,时间有限,晚上的时间基本用来看书了,习题也都是在工作间隙做的,慢慢来了,前两章读完再总结下。回到2.3节,这一节在前几节介绍数值型符号数据的基础上引入了符号数据,将任意符号作为数据的能力非常有趣,并给出了一个符号求导的例子,实在是太漂亮了。
习题2.53,直接看结果:
> (list ' a ' b ' c) (a b c) > (list (list ' george)) ((george)) > (cdr ' ((x1 x2) (y1 y2))) ((y1 y2)) > (cadr ' ((x1 x2) (y1 y2))) (y1 y2) > (pair? (car ' (a short list))) # f > (memq? ' red ' ((red shoes) (blue socks))) # f > (memq? ' red ' (red shoes blue socks)) (red shoes blue socks) 习题2.54,equal?过程的定义,递归定义,很容易
(define (equal? a b) (cond (( and ( not (pair? a)) ( not (pair? b)) (eq? a b)) # t) (( and (pair? a) (pair? b)) ( and (equal? (car a) (car b)) (equal? (cdr a) (cdr b)))) ( else (display " a and b are not equal " )))) 注意,在DrScheme实现中,eq?可以用于比较数值,比如(eq? 1 1)也是返回真
习题2.55,表达式(car ''abracadabra)其实就是
(car (quote (quote abracadabra))),也就是(car '(quote abracadabra)),显然将返回quote
习题2.56,求幂表达式的导数,学着书中的代码写,也很容易了,先写出constructor和selector:
(define (make - exponentiation base e) (cond (( = e 0) 1 ) (( = e 1 ) base) ( else (list ' ** base e)))) (define (base x) (cadr x)) (define (exponent x) (caddr x)) (define (exponentiation? x) ( and (pair? x) (eq? (car x) ' **))) 用**表示幂运算,因此(make-exponentiation x 3)表示的就是x的3次方。
修改deriv过程,增加一个条件分支:
(define (deriv exp var) (cond ((number? exp) 0) ((variable? exp) ( if (same - variable? exp var) 1 0)) ((sum? exp) (make - sum (deriv (addend exp) var) (deriv (augend exp) var))) ((product? exp) (make - sum (make - product (multiplier exp) (deriv (multiplicand exp) var)) (make - product (multiplicand exp) (deriv (multiplier exp) var)))) ((exponentiation? exp)
(let ((n (exponent exp)))
(make -product (make-product n (make-exponentiation (base exp) (- n 1 ))) (deriv (base exp) var)))) ( else error " unknown expression type -- Deriv " exp))) 粗体的就是我们增加的部分,两次运用make-product做乘法。
测试下:
> (deriv ' (** x 3) ' x) ( * 3 ( ** x 2 )) > (deriv ' (** (+ x 1) 5) ' x) ( * 5 ( ** ( + x 1 ) 4 )) 习题2.57,只要修改selector函数就够了,如果是多项的和或者积,那么被乘数和被加数也是列表,可以直接表示为符号表达式而不求值
(define (augend s) (let ((rest (cddr s))) ( if (null? (cdr rest)) (car rest) (cons ' + rest)))) (define (multiplicand p) (let ((rest (cddr p))) ( if (null? (cdr rest)) (car rest) (cons ' * rest)))) 习题2.58,分为a和b,a倒是很容易解答,修改下谓词、选择函数和构造函数就可以了,将运算符号放在列表中间,注意,题目已经提示,假设+和*的参数都是两个,因此
(a)题目:
(define ( = number? x y) ( and (number? x) ( = x y))) (define (variable? x) (symbol? x)) (define (same - variable? v1 v2) ( and (variable? v1) (variable? v2) (eq? v1 v2))) (define (sum? x) (let ((op (cadr x))) ( and (symbol? op) (eq? op ' +)))) (define (addend s) (car s)) (define (augend s) (caddr s)) (define (make - sum a1 a2) (cond (( = number? a1 0) a2) (( = number? a2 0) a1) (( and (number? a1) (number? a2)) ( + a1 a2)) ( else (list a1 ' + a2)))) (define (product? x) (let ((op (cadr x))) ( and (symbol? op) (eq? op ' *)))) (define (multiplier x) (car x)) (define (multiplicand x) (caddr x)) (define (make - product a1 a2) (cond (( or ( = number? a1 0) ( = number? a2 0)) 0) (( = number? a1 1 ) a2) (( = number? a2 1 ) a1) (( and (number? a1) (number? a2)) ( * a1 a2)) ( else (list a1 ' * a2)))) 测试下:
> (deriv ' (x + (3 * (x + (y + 2)))) ' x) 4 > (deriv ' (x + 3) ' x) 1 > (deriv ' ((2 * x) + 3) ' x) 2 > (deriv ' ((2 * x) + (3 * x)) ' x) 5 习题2.59,求集合的交集,遍历集合set1,如果(car set1)不在集合set2中,就将它加入set2,否则继续,当集合set1为空时返回set2。
(define (union - set set1 set2) (cond ((null? set1) set2) ((null? set2) set1) ((element - of - set? (car set1) set2) set2) ( else (union - set set1 (cons (car set1) set2))))) 习题2.60,需要修改的仅仅是adjoin-set:
(define (adjoin - set x set) (cons x set)) 效率由原来的n变成常量。其他操作的效率与原来的一样。有重复元素的集合,比如成绩单、钱币等等。
习题2.61,关键点就是在于插入元素后要保持集合仍然是排序的,如果x小于(car set),那么最小的就应该排在前面了,如果大于(car set),那么将(car set)保留下来,继续往下找:
(define (adjoin - set x set) (cond ((null ? set) (list x)) (( = x (car set)) set) (( < x (car set)) (cons x set)) ( else (cons (car set) (adjoin - set x (cdr set)))))) 习题2.62,与求交集类似:
(define (union - set set1 set2) (cond ((null ? set1) set2) ((null ? set2) set1) ( else (let ((x1 (car set1)) (x2 (car set2))) (cond (( = x1 x2) (cons x1 (union - set (cdr set1) (cdr set2)))) (( < x1 x2) (cons x1 (union - set (cdr set1) set2))) (( > x1 x2) (cons x2 (union - set set1 (cdr set2))))))))) 测试下:
> (define set1 (list 2 3 4 5 9 20 )) > (define set2 (list 1 2 3 5 6 8 )) > (union - set set1 set2) ( 1 2 3 4 5 6 8 9 20 ) 习题2.63,其实两个变换过程都可以看成是对树的遍历
a)通过测试可以得知,产生一样的结果,两者都是中序遍历二叉树,书中图的那些树结果都是(1 3 5 7 9 11)
b)对于tree->list-1过程来说,考虑append过程,并且每一步并没有改变搜索规模,而append的增长阶是O(n),因此tree->list-1的增长阶应该是O(n2),n的二次方
而对于tree-list-2过程,增长阶显然是O(n)
习题2.64,这题非常有趣,用一个数组构造一棵平衡的树,显然,方法就是将数组对半拆分,并分别对两个部分进行构造,这两个部分还可以拆分直到遇到数组元素(左右子树都是'()),中间元素作为entry。这个过程可以一直递归下去。这里采用的正是这种方式
a)解释如上,(1 3 5 7 9 11)将形成下列的二叉树:
5
/ \
1 9
\ / \
3 7 11
显然,列表的对半拆分,以5作为根节点,然后左列表是(1 3),右列表是(7 9 11),左列表拆分就以1为节点,右列表拆分以9为节点,其他两个为子树。
b)仍然是O(n)
习题2.65,很简单了,转过来转过去就是了:
(define (union-set-1 tree1 tree2) (list->tree (union-set (tree->list-2 tree1) (tree->list-2 tree2)))) (define (intersection-set-1 tree1 tree2) (list->tree (intersection-set (tree->list-2 tree1) (tree->list-2 tree2)))) 习题2.66,与element-of-set?类似:
(define (lookup given-key set-of-records) (cond ((null? set-of-records) #f) ((= given-key (key (entry set-of-records))) (entry set-of-records)) (( < given-key (key (entry set-of-records))) (lookup given-key (left-branch set-of-records))) (( > given-key (key (entry set-of-records))) (lookup given-key (right-branch set-of-records))))) 习题2.67,结果是(a d a b b c a) ,DrScheme字母符号是小写
习题2.68,使用到memq过程用于判断符号是否在列表中:
(define (encode-symbol symbol tree) (define (iter branch) (if (leaf? branch) '() (if (memq symbol (symbols (left-branch branch))) (cons 0 (iter (left-branch branch))) (cons 1 (iter (right-branch branch)))) )) (if (memq symbol (symbols tree)) (iter tree) (display "bad symbol -- UNKNOWN SYMBOL"))) 习题2.69,因为make-leaf-set产生的已经排序的集合,因此从小到大两两合并即可:
(define (generate - huffman - tree pairs) (successive - merge (make - leaf - set pairs)))(define (successive-merge set)
(if (= 1 (length set)) (car set) (successive-merge (adjoin-set (make-code-tree (car set) (cadr set)) (cddr set)))))
习题2.70,利用generate-huffman-tree和encode过程得到消息,使用length测量下消息长度就知道多少位了:
(define roll - tree (generate - huffman - tree ' ((A 2) (NA 16) (BOOM 1) (SHA 3) (GET 2) (YIP 9) (JOB 2) (WAH 1)))) (define message (encode ' (Get a job Sha na na na na na na na na Get a job Sha na na na na na na na na Wah yip yip yip yip yip yip yip yip yip Sha boom) roll - tree)) > ( length message) 84 通过huffman编码后的位数是84位,如果采用定长编码,因为需要表示8个不同符号,因此需要log2(8)=3位二进制,总位数至少是36*3=108位,压缩比为22.22%
习题2.71,很显然,最频繁出现的符号肯定在根节点下来的子树,位数是1,而最不频繁的符号是n-1位
文章转自庄周梦蝶 ,原文发布时间2007-07-03